Химия Урок № 6

Тема: «Ковалентная химическая связь. Металлическая связь».

Содержание

Ковалентная связь. Понятие о валентности и химической связи. Образование ковалентной связи. Образование ковалентной связи на примере некоторых молекул. Ковалентные полярная и неполярная связи. Электроотрицательность атома. Алгоритм составления схемы образования ковалентной связи (на примере H₂S). Вещества молекулярного строения. Закон постоянства состава. Ионная связь. Алгоритм составления схемы образования ионной связи (на примере K₃N). Вещества немолекулярного строения. Металлическая связь. Водородная связь. Проверим, как Вы поняли и запомнили пройденный материал. Проверьте свои ответы.

Содержание

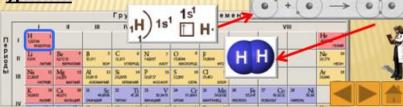
Практическая работа № 2 «Ионная химическая связь» (Естествознание). Степень окисления и валентность. Понятие степени окисления. Вопросы и задачи для подготовки к контрольной работе. Вопросы и задачи для подготовки к контрольной работе. Определение степени окисления атома в соединении. Составление химических формул бинарных соединений по степеням окисления. Проверим, как Вы поняли и запомнили пройденный материал. Проверим, как Вы поняли и запомнили проверыте свои ответы. Использованные источники.

на сайте НКСЭ:

Преподавателям → Методическая копилка → ЦМК Математических и естественнонаучных дисциплин → **Кузьмина Ирина Викторовна**

В библиотеке:

«Сетевые ресурсы» → «Справочная информация для студентов» → **Кузьмина Ирина Викторовна** → «Химия» → «Неорганическая химия»


Лекция

Цель: изучить ковалентную и металлическую химическую связь. **Залачи:**

- повторить изученные в школе сведения о ковалентной химической связи.
- > углубить свои знания о ковалентной химической связи,
- повторить изученные в школе сведения о металлической химической связи,
- > углубить свои знания о металлической химической связи.

Ковалентная химическая связь

Согласно теории ковалентной связи, атомы устойчивую приобретают элэктронную конфигурацию путём образования одной или нескольких общих для взаимодействующих атомов электронных пар. В образовании электронной пары принимают участие оба атома, каждый предоставляет по одному неспаренному электрону. (Возможен иной механизм образования ковалентной связи - донорноакцепторный.) При этом каждый атом приобретает завершённый энергетический уровень.

В общем виде механизм образования ковалентной связи можно представить схемой, на которой образующуюся общую электронную пару указывают двумя точками между символами элементов:

В результате между ядрами образуется сгущение отрицательного заряда, которое притягивает к себе ядра атомов и уменьшает силы их взаимного отталкивания.

Ковалентная связь — это химическая связь между атомами, осуществляемая с помощью общих электронных пар.

Н С Н

Электрон водорода
Электрон углерода

В образовании химической связи принимают участие не все валентные электроны атома, а только неспаренные.

В атомах элементов главной подгруппы VII группы один неспаренный электрон, а в атомах элементов главной подгруппы VI группы — два и т. д. Число неспаренных валентных электронов в атомах элементов главных подгрупп IV—VII групп показано в таблице, где знак Э обозначает символ элемента, а валентные электроны для наглядности обозначены точками вокруг него.

Группа	١٧	٧	VI	VII
Число валентных электронов	4	5	. 6	7
Валентные электроны	· .	٠ġ٠	·ä:	·ä:
Число неспаренных электронов	4	3	2	1

Число неспаренных электронов в атомах элементов <u>главных подгрупп IV–VII групп</u> можно определить и по формуле:

Число неспаренных электронов = = 8 – номер группы

Группа	IV	٧	VI	VII
Число валентных электронов	4	5	6	7
Валентные электроны	· - ;-	· 9:	· ;;:	·ä:
Число неспаренных электронов	4	3	2	1

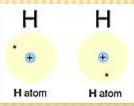
Примечание: у атомов элементов <u>главной подгруппы</u> IV группы в обычном состоянии всего 2 неспаренных электрона: (4) (46) (152/2522) (11) (11) (11)

В этом случае 4 неспаренных электрона у элементов появляется только в возбужденном состоянии:

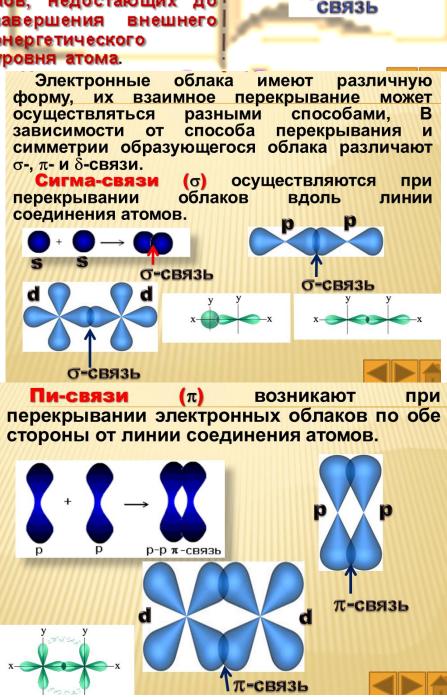
Электронная

формула молекулы состоит из символов элементов, вокруг которых точками обозначены валентные электроны (T. внешнего электроны уровня), а между ними – связывающие электронные пары.

Если в электронной формуле общую электронную пару заменить чёрточкой, то получится структурная формула молекулы.


Структурная формула — это формула молекулы, в которой каждая общая электронная пара изображается чёрточкой. СІ—СІ


Структурная формула молекулы


Формулы некоторых веществ

	Формулы				
Вещества	молекулярные	электронные	структурные		
Водород.	H ₂	н:н	н-н		
Аммиак	NH ₃	н:й:н Н	н-n-н н		
Метан	CH₄	н н:С:н н	н-с-н н		

Донорно-акцепторный механизм образования ковалентной связи

При взаимодействии частиц, одна из которых имеет пару электронов А: (донор), а другая — свободную орбиталь в (акцептор) образуется ковалентная связь которая называется донорно-акцепторной.

Алгоритм составления схемы образования ковалентной связи (на примере H₂S)

1. Определяем вид связи между атомами.

Определяем электроотрицательности элементов и их разность:

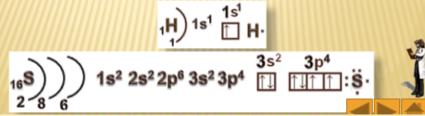
30(H) = 2,1 30(S) = 2,6 $\Delta 30(H-S) = |2,1-2,6| = 0,5$

Связь H–S ковалентная полярная, так как ∆ЭО≤1,7.

2. <u>Составляем электронные схемы и</u> электронные формулы атомов:

Водород располагается в І периоде, следовательно, у него 1 энергетический уровень; в 1 группе, главной подгруппе, следовательно на внешнем энергетическом уровне у него 1 электрон:

Сера располагается в **III пермоде**, следовательно, у неё **3 эмергетических уровня**; в **VI группе**, <u>главной подгруппе</u>, следовательно на внешнем энергетическом уровне у неё **6 электронов**, валентными являются s- и рэлектроны внешнего энергетического уровня — **3s²3p⁴** (учитываем что сумма валентных электронов равна номеру группы):


 Распределяем валентные электроны по орбиталям.

Вспомните: валентные электроны каждого атома можно обозначить точками вокруг символа элемента.

Валентным у водорода <u>является</u> 1s¹

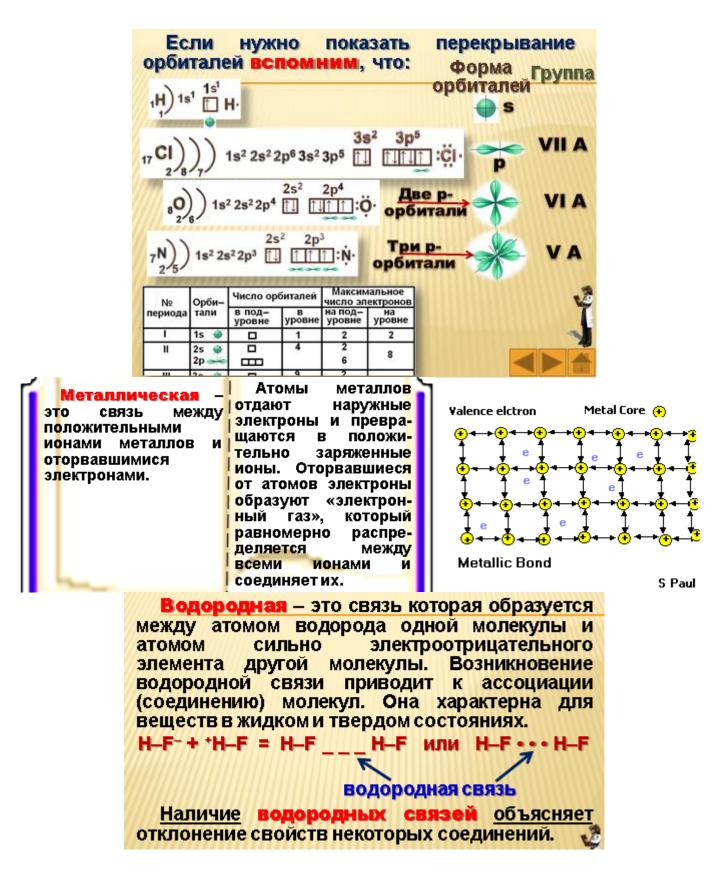
электрон.

Валентными у серы являются электроны внешнего энергетического уровня — 3s²3p⁴. (Число неспаренных электронов можно подсчитать по формуле: 8 — 6 = 2).

4. Показываем взаимодействие атомов и составляем электронную и структурную формулы образовавшейся молекулы.

До завершения внешнего электронного слоя атому серы не хватает двух электронов, поэтому при образовании молекулы H₂S возникают две пары общих электронов.

 Определяем смещение электронной плотности.


Общие электронные пары смещены в сторону атома серы, потому что он более электроотрицателен:

6. Показываем перекрывание орбиталей при образовании химической связи.

S (:) H

В образовании связи участвуют **s-орбитали водорода**, имеющие форму шара и **две р- орбитали серы** имеющие форму гантелей:

Примечание: более полно с материалом можно познакомиться по презентации. По вопросам, приведенным в презентации, проверьте себя, насколько хорошо вы поняли материал.

Все возникшие вопросы можете задать на следующем уроке.